SmartCloud - Normalizing IoT Data
for Event-Driven Architectures

Brian Granatir John Heard Pyit Phyo Aung
Smart Parking Smart Parking Smart Parking
Abstract

With the rise of IoT management sub-platforms (such as Google IoT Core and AWS IoT
Platform), organizations are able to easily gather massive datasets from distributed devices.
While previous research has focused on the methods and methodologies of collocating data
streams from IoT devices, few studies have been published on correlating this data for
interpretability and action. In this paper, we propose a set of guiding principles to help
normalize incoming data from disparate devices spatiotemporally with the express purpose of
deriving both analytical and actionable meaning. After the theory, we’ll explore
implementation using the context of the SmartCloud Platform, an event-driven architecture
currently in use by Smart Parking Ltd to deliver Smart City capabilities to our global
customers. The SmartCloud Platform uses ‘cloud native’ and ‘API First’ implementation
principles. The data architecture is designed to avoid restrictively static data schema and
utilise the continuum of schema options from highly structured through to the developing
dynamic multi-path graph frameworks which can be quite naturally used within machine
learning based services. As a platform, the SmartCloud Platform delivery strategy is based
upon the premise that ‘innovation can occur anywhere’ and thus we are adopting an open
technology access strategy with several mechanisms of access for solution creators to be able
to leverage combinations of functional or information capabilities available from the
SmartCloud Platform.

© Smart Parking Limited - 2017 1

1 Introduction

With cloud-based IoT management sub-platforms now publically available (available from
providers such as Google, Amazon, and Microsoft), onboarding of distributed data streams has
become a cost-efficient opportunity for many organizations. For most, this means gathering
sensor data from various internet-connected instruments deployed across large, and often
dynamic, geographical zones. Problems arise when introducing a ‘second device’, a new data
source that provides valuable data that has little in common with already established inputs.
Typically, this means adding custom logic to handle this new stream, resulting in a tight
coupling between these two data sets. For example, a shipping organization may have devices
installed on transport vehicles to monitor routes. A second device could be introduced to
monitor capacity utilization. The development team could easily form linkages between
drivers, routes, and capacity to determine the efficiency of delivery plans (i.e., are we limiting
transport time while maximizing vehicle usage?). The model for store this data could look
like:

/

Drivers Routes Delivery Events

This model answers our initial questions, but what if we add additional data points? Consider
incoming traffic data. Can we easily reroute our vehicles based on outstanding delivery
events? What about weather data, gas prices, tire pressure, and cargo-hold temperature? Our
development team could certainly expand an existing data model, but our system will soon
begin to resist adoption of new devices.

In the following sections, we’ll explore how to normalize data around spatiotemporal data
points readily available from any IoT connected device. We expand on this by exploring how
this data can easily integrate with an event-driven architecture. Next, we’ll examine how
these principles have been implemented using serverless microservices on a released Smart
City platform. Finally, we’ll give a brief overview of how analytics and business rules leverage
this architecture.

2 Normalizing IoT Data

If we ignore security, the onboarding of IoT data follows a standard flow:

| message packing \ | transfer \ | message unpacking |

[1. Sensor]->[2. Gateway] -> [3. IoT Manager] -> [4. Routing]->[5. Decoding]

© Smart Parking Limited - 2017 2

1. Readings from the device sensor(s) are encoded and broadcast to the gateway
The gateway wraps this message and sends it over an internet connection (note: some
devices will have their gateway built in, while others will use a gateway hub)

3. The IoT management platform accepts the message and passes it to the backend

4. Message is routed, based on the message [device] type

5. Message is decoded and normalized to a common API

The first challenge of onboarding 10T data is the varied nature of the messages. For example,
the data coming from a smart fridge would be vastly different from the streamlined, encoded
readings sent over radio frequencies from parking sensors buried in city streets. To overcome
this challenge, we define a common wrapper to help route incoming messages to their proper
decoder. A common implementation for this wrapper in JSON would be:

message: "HSIFIG3KT2NSF43IT23",
messagelInfo: {
type: "BadgerSensor",
version: "1.0.5"

}

While the message field contains the raw sensor payload (typically JSON or an encoded byte
string), we can perform routing without having to unbox it by having a standard messagelInfo
block. This is where we see the importance of having the sensor(s) and gateways be logically
separate. The sensor should only focus on reporting readings. It’s up to the gateway to handle
packaging and shipment of this payload.

Also, currently deployed devices can redirect to different central platforms by simply changing
or supplementing the gateways that service them. It is reasonable to expect custom gateways
for specific backends. In fact, the Smart City offering explored in the implementation section
below offers a SmartSpot gateway that will package any incoming broadcast, regardless of the
origin device type.

2.1 Duplicate, Missing, and Misordered Messages

Now that we’re onboarding and decoding data in messages, we can focus on the second
challenge of IoT data streams: windowing. As with any distributed systems, our architecture
must account for duplicate, missing, or misordered messages. In a sequence of network hops,
there is always the potential for delivery failure. Since our goal is to make actionable meaning,
incorrectly ordered events could be detrimental. For example, imagine if two temperature
readings came in out of order (e.g, the initial lower reading comes in after the subsequent
higher reading). Our system may incorrectly interpret a spike in temperature as a recovery.

The quickest solution is to add a timestamp to our message wrapper to allow us to perform
proper ordering and backfilling if a message should arrive late:

© Smart Parking Limited - 2017 3

"gateway": {
"id": "1232",
"type": "SmartSpot",
"timestamp": 1496025214182,
by
"message": "HSIFIG3KT2NSF43IT23",
"messageInfo": {
"type": "BadgerSensor",
"version": "1.0.5"

}

The timestamp is reported by the gateway when the message was received. While the
timestamp could (and should) be contained in the message, we cannot assume all sensors will
have synced clocks.

With a consistent timestamp, we are able to handle basic ordering and introduce advanced
windowing techniques. Many fabulous papers have been written about windowing, including
[1, 2]. The goal of this paper is to simply emphasize the importance of having a timestamp
that originates with the wrapping event (as opposed to further downstream) to assure
eventual ordering.

Business logic must be aware of the state of windows when making any action. More on this
will be discussed in our implementation section.

2.2 Spatiotemporal Messages

Now that we have a strategy to deal with identifying and windowing, we’re ready to address
the final requirement of normalizing IoT data: relating. Our services are unable to apply
generic logic or analytics to data points without having an implicit or explicit relationship.
While our Smart City implementation adds an additional level of explicit relation based on a
defined site structure (more can be found in our implementation section), this is not required
to achieve a baseline of meaning. Instead, we can focus on the most commonly available
datapoint: location. Let’s look at a couple of examples.

First, consider 800 devices that report the temperature of manufacturing equipment
throughout a factory. Assume an event where twelve devices report a dangerous increase in
operational temperature. With a basic system, we could react by turning off this machine and
calling for maintenance. However, if we know that these twelve devices are nearby we can
react to the potential of a more significant event, such as a fire.

Second, consider 3500 devices that detect parking events by using IR/magnetic sensors

distributed throughout a city. Assume an event where 600 of these devices report a departure.
With a basic system, we can update nearby signs to reflect the current count of vacancies.

© Smart Parking Limited - 2017 4

However, if we know that these 600 devices are all located downtown (perhaps a concert just
ended), we can react by changing traffic lights to assist with outbound traffic.

Fortunately, geolocation data is readily available and can be included with our primary
message packet:

"gateway": {
"gatewayId": "1232",
"gatewayType": "SmartSpot",
"timestamp": 1496025214182,
"lat": 80.614842,
"long": 95.273438,
"alt": 160
by
"message": "HSIFIG3KT2NSF43IT23",
"messageInfo": {
"type": "BadgerSensor",
"version": "1.0.5"

By adding latitude, longitude, and altitude data during message wrapping, we’re able to create
an implied relationship between all our inbound messages. For gateway hubs servicing
multiple devices, an additional lookup may be required at the time of unwrapping (e.g., we
conduct an additional lookup to determine that device FOO was installed in unit BAR at
location-36.831307, 174.893675). In such systems, the device would need to either
self-identify within the payload or be identified by the packaging gateway. As such, our final
inbound message would look like:

"deviceId": "12AB75FG",
"deviceType": "badger",
"gateway": {
"gatewayId": "1232",
"gatewayType": "SmartSpot",
"timestamp": 1496025214182,
"lat": 80.614842,
"long": 95.273438,
"alt": 160
y
"message": "HSIFIG3KT2NSF43IT23",
"messageInfo": {
"type": "BadgerSensor",

"version": "1.0.5"

© Smart Parking Limited - 2017 5

Since devices may move (ie., our proximity relationship to other readings may shift over
time), we must also include temporal data. Fortunately, we already included timestamp data
for ordering purposes. By combining location and timestamp data we’ve normalized all our
input spatiotemporally. Our next section will discuss how to integrate this normalized data
into an event-driven architecture.

3 IoT into Event-Driven Architecture

Event-driven architecture requires one simple principle: the output of every functional unit
must be either a command or an event. Commands trigger events and events can trigger new
commands. However, this causality must never be broken. A command cannot beget another
command, just as an event cannot spawn another event. While this architecture may seem
limiting at first, it marries well with streaming data and allows us to leverage principles of
temporal reasoning for our business rules.

In the previous section, we learned how to normalize IoT data by using simple message
wrapping. Hooking this data into a standard event-driven architecture is as simple as adding
an additional step: translation.

| message unpacking \ | translation \

-> [4. Routing]->[5. Decoding] -> [6. Translating] -> Command

For event-driven architectures, this means creation of a command. In most instances, our
device readings will result in a UpdateReadings or UpdateHealth command. Of course, if a
device or gateway natively speaks the command API, the decoding and translating steps can be
skipped.

We could end our journey here and incorporate a Complex Event Processor BRMS (like Drools)
to handle our logic, but there are several key challenges that most Complex Event Processor
(CEP) services cannot handle with the massive streaming input that we’d expect to see from a
robust, city-wide IoT network. First, current CEP offerings are monolithic. They’ve yet to
embrace a distributed deployment and synchronization design that is best suited for
auto-scaling architectures (especially serverless). Second, to support the expected
throughput, most CEPs would need massive memory footprints that are not practical and
introduce a significant state-maintenance risk. Third, CEP rules require a predefined
understanding of the input structure and won’t easily allow meaning to be derived from
previously unknown devices. Thusly, without a CEP, we need one further step to help with
analytics in event-driven architecture: aggregation.

Aggregation is a view of objects in an event-driven architecture at a moment in time defined
by the sequence of events before it. In other words, we’re creating an aggregate view of an
object based on seen events. If humans lived in an event-driven architecture, we could, in
theory, ‘rebuild’ the person by replaying all events on his or her Facebook timeline. While this
concept is very powerful, only recent advances in cheap data storage and queueing services
have made this methodology practical. More in our implementation section.

© Smart Parking Limited - 2017 6

Typically, aggregation is used to maintain traditional objects within an event-driven
architecture. For example, we could keep track of health message events to build a view of a
specific deployed device on our IoT network. However, we’ve found that an aggregation of
correlated events provides a powerful and generic way to view data entering a platform. In
other words, we’re making a larger event by aggregating together smaller events. These larger
events allow us to find meaning and drive action.

3.1 Event of Events - Temporal Reasoning

Applying temporal reasoning within a computer system is best done through the context of
intervals [3]. In summary, we gain insights and meaning by grouping smaller events into a
larger event interval. For example, if particular larger event is a lecture, the lecture itself can
contain many smaller events:

Ethics Lecture ---|---> students arrive

introduction

Jerry makes joke

main lecture

questions

We can also take the lecture in the context of an even larger interval, such as a work day:

Tuesday --|--> 10:00) Science Lecture
|
11:00) Ethics Lecture ---|---> students arrive
| |
12:00) Lunch introduction
| |
13:00) Robotics Lecture Jerry makes joke

By creating intervals, we can store knowledge about generic events that can help drive
analytics or system behaviour [4]. Moreover, as we’ll see in our implementation section, we
can build a simple tagging system to allow us to manage business rules on a per entity basis.

However, before we can start acting on intervals, we must find a consistent way to create and
expand them. Fortunately, event-driven architectures accommodate this aggregation. A
system must simply select a granularity that matches their domain. In our implementation
section, we’ll see a Smart City domain that focuses on a standard site stratification (regions ->
sites -> sectors -> units). Our goal is then to start aggregating events based on these levels of
granularity.

© Smart Parking Limited - 2017 7

For example, let’s say we were grouping events based at a site level. We would then aggregate
incoming device events that share a common site. Our domain should define the the interval
structure. For a site, this may be shifts or work days. For a unit, this may be individual
occupancies or worksets. We can now see the flow of 10T events as aggregated intervals:

[devices] -> [onboarding] -> [commands] —-+-> [event] \
| |-> [interval]
+-> [event] /
|
+-> [event] \
| |
+-> [event] -|-> [interval]
|
[ext service] ---> [API] --> [commands] ---> [event] /

Moreover, since our incoming messages are all commands, we can ingest data from any
external services, not just devices. A common example would be reservation information
provided by an external payment app.

Therefore, to gain knowledge about normalized IoT data, an event-driven architecture must
simply pick domain granularities and generate intervals (grouped events) based on that
design. Note: a single event can appear in many different intervals based on granularity, as
we’ll see in our implementation section.

4 Example Implementation

The SmartCloud Platform is a production service for management of Smart City services
negotiated through APIs. An overview of Smart Cities and their relationship to IoT can be
found in [5] and a review of microservices to support such a model can be found in [6].
SmartCloud is built on the Google Cloud Platform (GCP) and implements the principles
outlined in this paper. The goal of this section is to provide a brief overview of how covered
concepts can be developed and deployed for use by any generalized IoT backend.

4.1 Onboarding

IoT devices are registered with Google 10T Core at the time of installation or site definition.
Messages are placed into Pub/Sub queues that feed into Cloud Functions for decoding and
translation into commands. In the context of our original onboarding flow, we establish the
following workflow:

| message packing \ | transfer message unpacking

Design
[1. Sensor]->[2. Gateway] -> [3. IoT Manager] -> [4. Routing]->[5. Decoding]

SmartCloud Implementation
[1. Sensor]->[2. Gateway] -> [3. IoT Core] => [4. Pub/Sub]->[5. Cloud Fnc]

© Smart Parking Limited - 2017 8

With the rapid scaling and low costs of Pub/Sub and Cloud Functions, the platform is able to
handle significant data streams at reduced costs. Using microservice principles, expansion of
the service is also rapid and low-risk. Messages are normalized based on timestamp and
geolocation coordinates either provided by the device, gateway, or site structure.

4.2 Site Structure and Granularity

In SmartCloud, aggregation of events is based on a simple hierarchy:
Regions -> Sites -> Sectors -> Units -> Devices

One or more devices can be installed per unit. For example, if we’re deploying parking
sensors, then we can see each unit as being a bay. If we’re deploying street lights, we can see
each unit as a pole or assembly. A site has multiple sectors and sectors have multiple units of
various types. Each level of the hierarchy contains GPS coordinates that helps with spatial
stamping.

APIs target entities at any of these levels. For example, an external service can make a
payment against a unit or a reservation can be made against a specific site.

4.2 Creation of Intervals

Temporal intervals are made for events arriving at various levels of of the SmartCloud site
structure. Start and end points for these intervals are typically defined by utilization data
arriving from devices. These intervals are stored within Datastore (Google’s NoSQL service
built on BigTable) as a time series. The rowkeys for this time series, and therefore indexing,
follow the schema outlined in [6].

Therefore, an interval is defined by a collection of rows in Datastore. These events have vastly
different data. While we could store all this data within the NoSQL database, we’d soon hit the
column limit. To avoid this, SmartCloud utilizes a linkage system commonly found in
graphing databases. Whenever a row is added to an interval, an edge is created that connects
this row with the corresponding aggregate. A possible interval example for a parking event
will look like:

===== Event ===== == Linked Aggregate ==
Interval --|--> unit occupied <------- Unit
\
payment made <--------- Payment
\
overstay check <-—-—-—---- Tag
\
overstay detected <---- Tag
\
online extension <----- Payment

\
© Smart Parking Limited - 2017 9

overstay retracted <--- Tag

unit vacated <---—-—-—--- Unit

As such, edges are automatically created between the interval and the aggregates associated
with all appended events. This concept of linkages also allows us to translate a sequence of
events into a graph of related objects. This knowledge can be used to answer simple queries,
such as “Does this parking event have a payment?” or “Is this interval linked to any
incomplete stream windows (i.e., are any crucial events potentially missing)?”

4.3 Business Logic

With spatiotemporal normalized data collected into event intervals, SmartCloud offers data
sets that provide meaning for both analytics and real-time business logic. Business rules are
applied at various levels of the site hierarchy through inherited tags. These functional tags are
designed to sort based on temporal relationship and then trigger a command based on
established edges. In other words, we sort our rules based on time relevance and then process
these rules in order until one or more ‘breaks’, triggering a new command within SmartCloud.

A tag that would trigger an overstay command 10 minutes after arrival would look like:

sorterType: "javascript",

sorter: " (startTime) => { return startTime + (60000 * 10) } ",
breakerType: "javascript",

breaker: " (interval) => { return { command: ‘overstay’, break: true } }"

}

More information on these tags, temporal reasoning, and the associated breaker algorithm can
be found in a subsequent paper.

Analytic data is made available in real-time and report views via a customizable dashboard
and through Google’s BigQuery service by streaming event and aggregate data via Cloud
Functions.

5 Conclusions

IoT management platforms, serverless computing, and cheap cloud-based storage have made
ingestion and reaction to large data streams a possibility for any architecture. Normalizing
spatiotemporally allows us to find meaningful relationships between seemingly disparate data.
For event-driven architecture, we can use these relationships to easily create intervals of
collected events. These intervals allow us access to business logic and analytics based on
powerful temporal reasoning. This reasoning is made far simpler by creating edges to
aggregates associated with events contained in these intervals, essentially creating a graph
between grouped events and related entities.

© Smart Parking Limited - 2017 10

6 References

[1] T. Akidau, “The world beyond batch: Streaming 102,” O’Reilly Data Science Blog,
January 2016.

[2] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. Fernandez-Moctezuma, R. Lax,
S. McVeety, D. Mills, F. Perry, E. Schmidt, S. Whittle, “The Dataflow Model: A Practical
Approach to Balancing Correctness, Latency, and Cost in Massive-Scale, Unbounded,
Out-of-Order Data Processing,” Proceedings of the VLDB Endowment, vol. 8 (2015),
pp. 1792-1803.

[3] James F. Allen, “An Interval-Based Representation of Temporal Knowledge,”
Proceedings of the 7th International Joint Conference on Artificial Intelligence, vol. 1
(1981), pp. 221-226.

[4] James F. Allen, “Maintaining Knowledge about Temporal Events,” Communications
of the ACM, vol. 26 (1983), issue 11, pp. 832-843.

[5] A. Zanella, N. Bui, A. P. Castellani, L. Vangelista, and M. Zorzi, “Internet of
Things for Smart Cities,” IEEE Internet of Things Journal, 2014.

[6] A. Krylovskiy, M. Jahn, E. Patti, “Designing a Smart City Internet of Things Platform
with Microservice Architecture,” The 3rd International Conference on Future Internet
of Things and Cloud (FiCloud), Rome, Italy, August 2015.

[7] “Cloud Bigtable Schema Design for Time Series Data,” GCP Documentation,
(https://cloud.google.com/bigtable/docs/schema-design-time-series), Sept 2017.

© Smart Parking Limited - 2017 11

